
    g                     \    d Z ddZddZd Zd Zd Zd Zd Zdd	Zdd
Z	ddZ
ddZd Zy)zE
Built-in datasets for demonstration, educational and test purposes.
Nc                    t        d      }|r||d   |k(     }| r-|d   j                  t              dz   j                  d      |d<   |s|j                  ddgd      }|r'|j	                  t        d	d
dddddddd
      dd       |S )a  
    Each row represents a country on a given year.

    https://www.gapminder.org/data/

    Returns:
        A `pandas.DataFrame` with 1704 rows and the following columns:
        `['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap',
        'iso_alpha', 'iso_num']`.
        If `datetimes` is True, the 'year' column will be a datetime column
        If `centroids` is True, two new columns are added: ['centroid_lat', 'centroid_lon']
        If `year` is an integer, the dataset will be filtered for that year
    	gapminderyearz-01-01datetime64[ns]centroid_latcentroid_lon   )axisCountry	ContinentYearzLife ExpectancyzGDP per Capita
PopulationzISO Alpha Country CodezISO Numeric Country CodezCentroid LatitudezCentroid Longitude)
country	continentr   lifeExp	gdpPercappop	iso_alphaiso_numr   r   columnsTmapperr	   inplace)_get_datasetastypestrdroprenamedict)	datetimes	centroidsr   pretty_namesdfs        Q/var/www/dash_apps/app1/venv/lib/python3.12/site-packages/plotly/data/__init__.pyr   r      s     
k	"B6
d"#j'',x7??@PQ6
WWnn5AW>
		!%)* 2201  	 	
  I    c                 h    t        d      }| r$|j                  t        ddddddd	      d
d       |S )a  
    Each row represents a restaurant bill.

    https://vincentarelbundock.github.io/Rdatasets/doc/reshape2/tips.html

    Returns:
        A `pandas.DataFrame` with 244 rows and the following columns:
        `['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size']`.tipsz
Total BillTipzPayer GenderzSmokers at TablezDay of WeekMealz
Party Size)
total_billtipsexsmokerdaytimesizer   Tr   )r   r   r   )r!   r"   s     r#   r&   r&   /   sN     
f	B
		'")!!  	 	
 Ir$   c                      t        d      S )a  
    Each row represents a flower.

    https://en.wikipedia.org/wiki/Iris_flower_data_set

    Returns:
        A `pandas.DataFrame` with 150 rows and the following columns:
        `['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species', 'species_id']`.irisr    r$   r#   r1   r1   K   s     r$   c                      t        d      S )z
    Each row represents a level of wind intensity in a cardinal direction, and its frequency.

    Returns:
        A `pandas.DataFrame` with 128 rows and the following columns:
        `['direction', 'strength', 'frequency']`.windr2   r3   r$   r#   r5   r5   W   s     r$   c                      t        d      S )a"  
    Each row represents voting results for an electoral district in the 2013 Montreal
    mayoral election.

    Returns:
        A `pandas.DataFrame` with 58 rows and the following columns:
        `['district', 'Coderre', 'Bergeron', 'Joly', 'total', 'winner', 'result', 'district_id']`.electionr2   r3   r$   r#   r7   r7   a        
##r$   c                  r   ddl } ddl}ddl}|j                  j	                  |j                  j                  |j                  j                  t                    ddd      }| j                  |d      5 }|j                  |j                         j                  d            }ddd       |S # 1 sw Y   S xY w)a0  
    Each feature represents an electoral district in the 2013 Montreal mayoral election.

    Returns:
        A GeoJSON-formatted `dict` with 58 polygon or multi-polygon features whose `id`
        is an electoral district numerical ID and whose `district` property is the ID and
        district name.    Npackage_datadatasetszelection.geojson.gzrzutf-8)gzipjsonospathjoindirname__file__GzipFileloadsreaddecode)r>   r?   r@   rA   fresults         r#   election_geojsonrK   l   s     77<<
12	D 
tS	! 6QAFFHOOG456M6Ms   3/B,,B6c                      t        d      S )a!  
    Each row represents the availability of car-sharing services near the centroid of a zone
    in Montreal over a month-long period.

    Returns:
        A `pandas.DataFrame` with 249 rows and the following columns:
        `['centroid_lat', 'centroid_lon', 'car_hours', 'peak_hour']`.carsharer2   r3   r$   r#   rM   rM      r8   r$   c                     t        d      }|r|d   j                  d      |d<   | r"|j                  d      }d|j                  _        |S )a  
    Each row in this wide dataset represents closing prices from 6 tech stocks in 2018/2019.

    Returns:
        A `pandas.DataFrame` with 100 rows and the following columns:
        `['date', 'GOOG', 'AAPL', 'AMZN', 'FB', 'NFLX', 'MSFT']`.
        If `indexed` is True, the 'date' column is used as the index and the column index
        If `datetimes` is True, the 'date' column will be a datetime column
        is named 'company'stocksdater   company)r   r   	set_indexr   name)indexedr   r"   s      r#   rO   rO      sK     
h	BZ&&'786
\\&!#

Ir$   c                 B    t        d      }| rd|j                  _        |S )a  
    Each row in this wide dataset represents the results of 100 simulated participants
    on three hypothetical experiments, along with their gender and control/treatment group.


    Returns:
        A `pandas.DataFrame` with 100 rows and the following columns:
        `['experiment_1', 'experiment_2', 'experiment_3', 'gender', 'group']`.
        If `indexed` is True, the data frame index is named "participant" 
experimentparticipant)r   indexrS   rT   r"   s     r#   rV   rV      s!     
l	#B%Ir$   c                 d    t        d      }| r"|j                  d      }d|j                  _        |S )au  
    This dataset represents the medal table for Olympic Short Track Speed Skating for the
    top three nations as of 2020.

    Returns:
        A `pandas.DataFrame` with 3 rows and the following columns:
        `['nation', 'gold', 'silver', 'bronze']`.
        If `indexed` is True, the 'nation' column is used as the index and the column index
        is named 'medal'medalsnationmedal)r   rR   r   rS   rY   s     r#   medals_wider^      s/     
h	B\\(#!

Ir$   c                 h    t        d      j                  dgdd      }| r|j                  d      }|S )a>  
    This dataset represents the medal table for Olympic Short Track Speed Skating for the
    top three nations as of 2020.

    Returns:
        A `pandas.DataFrame` with 9 rows and the following columns:
        `['nation', 'medal', 'count']`.
        If `indexed` is True, the 'nation' column is used as the index.r[   r\   countr]   )id_vars
value_namevar_name)r   meltrR   rY   s     r#   medals_longre      s?     
h		$	$
w 
% 
B \\(#Ir$   c           	          dd l }dd l}|j                  |j                  j	                  |j                  j                  |j                  j                  t                    dd| dz               S )Nr:   r;   r<   z.csv.gz)pandasr@   read_csvrA   rB   rC   rD   )drg   r@   s      r#   r   r      sS    ??
GGOOBGGOOH56	M		
 r$   )FFNF)F)FF)__doc__r   r&   r1   r5   r7   rK   rM   rO   rV   r^   re   r   r3   r$   r#   <module>rk      sG   
&R8	  $.$& ""r$   